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In 1801, Carl Friedrich Gauss wrote:

“The problem of distinguishing prime numbers from composite
numbers, and of resolving the latter into their prime factors, is
known to be one of the most important and useful in
arithmetic. It has engaged the industry and wisdom of ancient
and modern geometers to such an extent that it would be
superfluous to discuss the problem at length. Nevertheless we
must confess that all methods that have been proposed thus far
are either restricted to very special cases or are so laborious and
difficult that even for numbers that do not exceed the limits of
tables constructed by estimable men, they try the patience of
even the practiced calculator. And these methods do not apply
at all to larger numbers... Further, the dignity of science itself
seems to require that every possible means be explored for the
solution of a problem so elegant and so celebrated.”
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Two elementary theorems:

Wilson: If p is prime, then (p− 1)! ≡ −1 (mod p).

Fermat: If p is prime and p - a, then ap−1 ≡ 1 (mod p).

How efficient are these as primality criteria?

It would seem neither, since they both involve gigantic numbers

when p is large.
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For Fermat, the repeated squaring algorithm is quite efficient:

Use

ak mod n =


(
ak/2 mod n

)2
mod n, if k is even,

a
(
a(k−1)/2 mod n

)2
mod n, if k is odd.
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For Fermat, the repeated squaring algorithm is quite efficient:
Use

ak mod n =


(
ak/2 mod n

)2
mod n, if k is even,

a
(
a(k−1)/2 mod n

)2
mod n, if k is odd.

Let’s check out Fermat for a = 2, p = 91. We have

90 = 2 · 45, 45 = 2 · 22 + 1, 22 = 2 · 11, 11 = 2 · 5 + 1,

and 25 = 32, so

211 = 22·5+1 = 2 · (25)2 ≡ 46 (mod p),

222 = (211)2 ≡ 23 (mod p), 245 = 2 · (222)2 ≡ 57 (mod p),

290 = (245)2 ≡ 64 (mod p).

Huh?
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Fermat: If p is prime and p - a, then ap−1 ≡ 1 (mod p).

So, we conclude that it is efficient to check Fermat, but the

theorem is wrong!?

Actually, the theorem is correct, and the calculation that

290 6≡ 1 (mod 91) proves that 91 is composite!

Not boring you with the calculation, but if we try it we find that

2340 ≡ 1 (mod 341).

What should be concluded?

Answer: 341 is prime
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Fermat: If p is prime and p - a, then ap−1 ≡ 1 (mod p).

So, we conclude that it is efficient to check Fermat, but the

theorem is wrong!?

Actually, the theorem is correct, and the calculation that

290 6≡ 1 (mod 91) proves that 91 is composite!

Not boring you with the calculation, but if we try it we find that

2340 ≡ 1 (mod 341).

What should be concluded?

Answer: 341 is prime or composite.

6



In fact: 341 = 11× 31.

So the converse of Fermat is false in general.

But note that the converse of Wilson is correct:

If (n− 1)! ≡ −1 (mod n), then n is 1 or prime.

Unfortunately, we know no fast way to check the Wilson

congruence.

Returning to Fermat, it seems the converse is almost true.

Can we find some way to turn Fermat around and make it a

primality-proving engine?
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Lucas: Suppose that n > 1 and a are integers with

an−1 ≡ 1 (mod n) and

a(n−1)/q 6≡ 1 (mod n) for all primes q | n− 1.

Then n is prime.

Proof. Let h be the multiplicative order of a in the group

(Z/nZ)×. The first congruence implies that h | n− 1. The

second batch of congruences imply that h is not a proper

divisor of n− 1. Thus, h = n− 1 and so |(Z/nZ)×| ≥ n− 1.

We conclude that n is prime. �
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This delightfully simple and elegant idea of Lucas has been the

basis of essentially all of primality testing.

But first, why do we need to go further, isn’t this the converse

of Fermat that we were looking for?
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Lucas: Suppose that n > 1 and a are integers with

an−1 ≡ 1 (mod n) and

a(n−1)/q 6≡ 1 (mod n) for all primes q | n− 1.

Then n is prime.

Questions:

1. If n is prime, is there a number a satisfying the hypothesis?

2. If so, how do we find such a number a?

3. If we have a number a, how do we find the primes q | n− 1
needed for the second batch of congruences?
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1. If n is prime, is there a number a satisfying the hypothesis?

That is, must (Z/nZ)× be a cyclic group? Yes, by a theorem of

Gauss.

2. If so, how do we find such a number a?

A sequential search starting with a = 2 is conjectured to

succeed quickly, and this is provable assuming the GRH. The

probabilistic algorithm of choosing random numbers a is very

fast in practice and in theory. (The randomness involved is in

finding the proof that n is prime; there should be no doubt in

the conclusion.)
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3. If we have a number a, how do we find the primes q | n− 1

needed for the second batch of congruences?
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3. If we have a number a, how do we find the primes q | n− 1

needed for the second batch of congruences?

Aye, there’s the rub.
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3. If we have a number a, how do we find the primes q | n− 1
needed for the second batch of congruences?

Aye, there’s the rub.

Well, for some numbers n it is not so hard, say n = 2m + 1.
Note: For this to be prime, a necessary condition is that
m = 2k for some k.

Pepin: If k ≥ 1, then n = 22k
+ 1 is prime if and only if

3(n−1)/2 ≡ −1 (mod n).

Proof. If the congruence holds, then Lucas implies n is prime.
Say n is prime. Since n ≡ 5 (mod 12), Euler’s criterion and
Gauss’s law of quadratic reciprocity imply that the congruence
holds. �
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What do we know about primes of the form Fn := 22n
+ 1?

They are known as Fermat primes. Based on the fact that they

are prime for n = 0,1,2,3,4, it seems he thought that they are

always prime. However, Euler proved that F5 = 225
+ 1 is

composite, not by Pepin, but by finding a proper factor,

namely 641.
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Fermat probably could not have been more wrong about the
numbers Fn being all prime, since for every n > 4 where we
know the answer, it is composite! Most of these n’s were
determined by finding a factor.

The largest value of n where Fn has been tested for primality
via Pepin is n = 24. But we know that every Fn is composite
for 5 ≤ n ≤ 32 and also for many larger values of n, see
http://www.prothsearch.com/fermat.html.

Actually, the Fermat numbers Fn have played an important role
in factoring. The continued fraction factoring algorithm cut its
teeth on the case n = 7, the Pollard rho method on the case
n = 8, the number field sieve on the case n = 9, and the elliptic
curve method has been successfully used on many larger values
of n. But this is a discussion for a different lecture!
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A seminal paper on factoring dealt with the factorization of

227
+ 1:

M. Morrison & J. Brillhart, A method of factoring and the

factorization of F7, Math. Comp. 29 (1975), 183–205.

Collection of articles dedicated to Derrick Henry Lehmer on the

occasion of his seventieth birthday.
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Before leaving the thin sequence of Fermat numbers, it is good

to note their connection to a classical problem. Gauss proved

in 1796 that if n > 2 is a power of 2 times a product of distinct

Fermat primes, then there is a ruler and compass Euclidean

construction of a regular n-gon. The numbers are:

3, 4, 5, 6, 8, 10, 12, 15, 16, 17, 20, 24, 30, . . . .

He also claimed the converse holds, i.e., these are the only n

where the regular n-gon is constructible, and Wantzel

published a proof of this in 1837.
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Another sequence of historical note are the Mersenne numbers

2p − 1, where p is prime. The only odd primes that are 1 more

than a power of 2 are the Fermat primes, and the only primes

that are 1 less than a power of 2 are the Mersenne primes.

But 2p − 1 with p prime is not always prime. It is for every

prime p up to 20 except for p = 11. But then they drastically

thin out. The largest Mersenne prime known is

277,232,917 − 1,

a prime number with over 23 million decimal digits. It is the

50th and largest one found, but it might not be the 50th

Mersenne prime since we have only searched exhaustively up to

around exponent 50,000,000.
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Just as the Lucas primality test works well for numbers n where
we know the complete prime factorization of n− 1, the
Lucas–Lehmer test works well when we know the complete
prime factorization of n + 1.

The Lucas test builds up a subgroup in the unit group of the
ring R = Z/nZ that is so large that R is proved to be a field,
and so n is prime.

The Lucas–Lehmer test builds up a large multiplicative
subgroup of the unit group in the ring R = (Z/nZ)[x]/(f(x)),
where f(x) is a quadratic polynomial in (Z/nZ)[x] that would
be irreducible if n is prime. The test essentially shows that R is
a finite field and n is prime.

In the case of Mersenne numbers, the test is particularly
simple, the polynomial used is f(x) = x2 − 4x + 1.
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Some interesting papers on Mersenne primes:

D. B. Gillies, Three new Mersenne primes and a statistical

theory, Math. Comp. 18 1964 93–97.

C. Noll & L. Nickel, The 25th and 26th Mersenne primes,

Math. Comp. 35 (1980), 1387–1390.
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We have tried combining different tests. E.g., Carmichael
numbers are composites for which the Fermat congruence
holds for every coprime base, the first example being 561.
After Alford, Granville, & CP we know there are infinitely
many Carmichael numbers. There has been some controversy
surrounding their distribution, see:

A. Granville & CP, Two contradictory conjectures concerning
Carmichael numbers, Math. Comp. 71 (2002), 883–908.

There have also been thoughts about combining the Fermat
test with the Lucas–Lehmer test. The following paper has a
problem in this vein now worth $620, though only $30 was
offered in the paper:

CP, J.L. Selfridge, & S.S. Wagstaff, Jr., The pseudoprimes
to 25× 109, Math. Comp. 35 (1980), 1003–1026.
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Generalizing we could use the unit group in (Z/nZ)[x]/(f(x))

where f has higher degree than 2, or we could use other

families of groups.
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For example, elliptic curve groups:

For p > 3 prime and a, b integers with 4a3 + 27b2 6≡ 0 (mod p),

consider the set of nonzero triples (x : y : z) mod p with

y2z ≡ x3 + axz2 + bz3 (mod p),

where the notation (x : y : z) means that for c 6≡ 0 (mod p), we

identify (x : y : z) with (cx : cy : cz). We can create a group

structure on these triples, with the identity being (0 : 1 : 0).

(The group law involves some simple polynomial operations

and comes from the geometric chord-tangent method for

elliptic curves.)

Hasse, Schoof: The order of the group is in the interval

(p+1−2
√
p, p+1+2

√
p); it can be quickly computed.
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R. Schoof, Elliptic curves over finite fields and the

computation of square roots mod p, Math. Comp. 44 (1985),

483–494.



Say we have a number n that we think is prime, we choose a, b
with (4a3 + 27b2, n) = 1, we compute the order h of the elliptic
curve “group” (as if n were prime), h is in the interval
(n+1−2

√
n, n+1+2

√
n), we have the complete prime

factorization of h, and we have a point P on the curve of order
h, verified as with Lucas. Then n is prime.

This is the basic idea behind ECPP (Elliptic Curve Primality
Proving), due to Goldwasser & Kilian, Atkin, Morain and
Elkies, though you can see it is really just Lucas in another
setting.

Notes: If the order h is hard to factor, then we can switch out
to a new elliptic curve group, a huge advantage. The elliptic
curve group need not be cyclic, but it often is, and almost
always is nearly so. Many tweaks make this into a better
algorithm.
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Every prime has an elliptic curve “certificate” that is about as
speedy to verify as Pepin is for Fermat primes:

CP, Very short primality proofs, Math. Comp. 48 (1987),
315–322.

A seminal paper on practical elliptic curve primality proving:

A. O. L. Atkin & F. Morain, Elliptic curves and primality
proving, Math. Comp. 61 (1993), 29–68.

Can this be made deterministic?

A. Abatzoglou, A. Silverberg, A. V. Sutherland, &
A. A. Wong, A framework for deterministic primality proving
using elliptic curves with complex multiplication, Math. Comp.
85 (2016), 1461–1483.

26



Before mentioning some modern developments on the

theoretical side of proving primality, suppose you just wanted a

quick and dirty “gut check” on whether some large number is

prime.

The very simple Fermat congruence:

ap−1 ≡ 1 (mod p)

is a snap to check and usually doesn’t lie. When the

congruence fails for a pair a, p with 1 < a < p, then p is

definitely composite. And most pairs a, p where the congruence

holds have p prime.

P. Erdős & CP, On the number of false witnesses for a

composite number, Math. Comp. 46 (1986), 259–279.
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S. H. Kim & CP, The probability that a random probable

prime is composite, Math. Comp. 53 (1989), 721–741.

J. D. Lichtman & CP, Improved error bounds for the Fermat

primality test on random inputs, Math. Comp. 87 (2018),

2871–2890.

In the latter paper it’s shown, for example, that a random odd

number of 200 bits that passes just one random Fermat test is

composite with probability < 10−4.
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The “strong” Fermat test: If p is an odd prime with
p− 1 = 2jh, with h odd, then for any a not divisible by p, either
ah ≡ 1 (mod p) or a2ih ≡ −1 (mod p) for some i < j.

After Miller, Rabin, Damg̊ard–Landrock–CP, and Burthe,
we now know that the probability of compositeness for a
random odd p that passes k random applications of the strong
test is < 4−k. In fact, if the random number has 300 bits, the
probability of just 1 random strong test lying is < 1/4,000,000,
and with 600 bits, it’s < 1/(3× 1022).

I. Damg̊ard, P. Landrock, & CP, Average case error
estimates for the strong probable prime test, Math. Comp. 61
(1993), 177–194.

R. Burthe, Further investigations with the strong probable
prime test, Math. Comp. 65 (1996), 373–381.
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Let us return now to the idea where we build up a large

subgroup of the unit group in the ring (Z/nZ)[x]/(f(x)), where

f(x) is a polynomial.

In particular, say we have a monic polynomial f ∈ (Z/nZ)[x] of

degree k with

xn
k
≡ x (mod f(x)), gcd(xn

j
− x, f(x)) = 1 for 1 ≤ j ≤ k/2.

If n is prime, these conditions hold if and only if f is irreducible

over Fn = Z/nZ. But the conditions can be easily checked for

any n.
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The finite fields test:

Lenstra: Suppose n, k, f are as on the previous slide. Suppose
too that F | nk−1 and F >

√
n. Say g ∈ (Z/nZ)[x] satisfies

• g(x)F ≡ 1 (mod f(x)),

• (g(x)F/q−1, f(x)) = 1 for each prime q | F ,

• the elementary symmetric polynomials of
{g(x), g(x)n, . . . , g(x)n

k−1} are all in Z/nZ.

If none of the residues nj mod F for 0 ≤ j ≤ k−1 are proper
factors of n, then n is prime.
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Note that it can be much easier to find a large factored divisor

of nk−1 than of n−1, since factors can show up “for free”. For

example, if k = 2, then we automatically have 24 | n2−1

(assuming n is coprime to 6). If k = 12, we automatically have

65,520 = 24 · 32 · 5 · 7 · 13 | n12−1, and so on.

Adleman, CP, & Rumely: There is a value of

k < (logn)c log log logn such that the least common multiple of

the prime powers q with ϕ(q) | k exceeds
√
n.

In particular, the finite fields test of Lenstra can be made into

a probabilistic algorithm with expected run time of

(logn)O(log log logn) to decide if n is prime.
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The finite fields test, with expected run time (logn)c log log logn,

is a simplified version of a deterministic test with the same

running time. This is the Jacobi sums test of Adleman, CP,

& Rumely, which is actually computer practical. An early

paper on its implementation:

H. Cohen & A. K. Lenstra, Implementation of a new

primality test, Math. Comp. 48 (1987), 103–121, S1–S4.
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There are drawbacks with each of the tests considered so far:

The basic Lucas test needs a large factored divisor of n−1, and

randomness is used to produce a proof.

The elliptic curve test uses randomness and it has not been

rigorously proved to run in polynomial time.

The finite fields test and the Jacobi sums test do not run in

polynomial time.

From a theoretical perspective what would be ideal is a

determininistic, polynomial-time algorithm . . .

Which brings us to the test of Agrawal, Kayal, & Saxena.
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Agrawal, Kayal, & Saxena: Suppose n, r are positive integers

with (n, r) = 1 and the multiplicative order of r ∈ Z/nZ exceeds

(log2 n)2. If, in (Z/nZ)[x],

(x + a)n ≡ xn + a (mod xr − 1)

for each integer a in [0,
√
ϕ(r) log2 n], then either n has a prime

factor in this interval or n is a prime power.
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Using Fast Fourier Transform techniques for integer and
polynomial arithmetic, it is possible to show that the running
time of the AKS test is O(r1.5(logn)3) times some power of
log logn.

Thus, since r can be bounded by a power of logn, it follows
that the test runs in polynomial time. And no randomness is
needed.

Heuristically, there should be a value for r near (logn)2 leading
to the complexity (logn)6, but the best that has been proved
for r is a little lower than (logn)3, leading to (logn)7.5 for the
complexity of the test.

Note that the AKS test uses the polynomial xr − 1. Might we
use other polynomials?
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Lenstra & P: Suppose f(x) ∈ (Z/nZ)[x] is a monic polynomial

of degree d > (log2 n)2 with

f(xn) ≡ 0 (mod f(x)), xn
d
≡ x (mod f(x)),

(xn
d/q
− x, f(x)) = 1 for all primes q | d.

If

(x + a)n ≡ xn + a (mod f(x)) for all a ∈ [0,
√
d log2 n],

then either n is divisible by a prime in this interval or n is a

prime power.

The proofs of this theorem and the AKS theorem both involve

building up large groups using the given information. Sound

familiar? Again it is the idea of Lucas.
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One can show, with considerable effort, that there is a fast

algorithm to produce a valid f(x) for the theorem with degree

≤ 4(log2 n)2 (or prove n composite along the way). In fact, to

be valid, it is sufficient that f(x) is irreducible, but it is not an

easy task to quickly, rigorously, and deterministically produce

an irreducible polynomial over a finite field.

The proof uses the cyclotomic periods that Gauss used in his

proof on the constructibility of regular n-gons. We have found

it pleasing to use this signature result of Gauss to make

progress on his call-to-arms of distinguishing prime numbers

from composite numbers.
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THANK YOU
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